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Announcements

= Assignments
= P83 due tonight
= W4 going out tonight

= Midterm
= 3/18, 6-9pm, 0010 Evans
= No lecture on 3/18

Probabilistic Inference

= Probabilistic inference: compute a desired probability from
other known probabilities (e.g. conditional from joint)

= We generally compute conditional probabilities
= P(on time | no reported accidents) = 0.90
= These represent the agent’s beliefs given the evidence

= Probabilities change with new evidence:
= P(on time | no accidents, 5 a.m.) = 0.95
= P(on time | no accidents, 5 a.m., raining) = 0.80
= Observing new evidence causes beliefs to be updated

Inference by Enumeration

= P(sun)?
S T w P
summer hot sun 0.30

summer hot rain 0.05
= P(sun | winter)? summer | cold | sun 0.10

summer | cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

- P(sun ‘ winter, Warm)? winter cold rain 0.20

Inference by Enumeration

= General case:
= Evidence variables: £1-..Ep=ej...e; X1,Xo2,... Xn
= Query* variable: Q

= Hiddenvariables: ;... H, All variables

= Wewant: P(Qles...ex)

= First, select the entries consistent with the evidence

= Second, sum out H to get joint of Query and evidence:

Z P(Q,hy...hr,eq1...e)
S

hyoh ~

P(Q,e1...ep) =

X1,X2,...Xn
= Finally, normalize the remaining entries to conditionalize
= Obvious problems: )
* Works fine with

= Worst-case time complexity O(d") multiple query
= Space complexity O(d") to store the joint distribution variables, too

The Product Rule

= Sometimes have conditional distributions but want the joint

PGl = L@ =2 P(a,y) = P(aly)P(y)

P(y)
= Example:
P(DIW) P(D,W)
P(W) D W P D W P
) b wet sun | 0.1 wet sun | 0.08
sn 108 dry | sun | 0.9 <:::> dry | sun | 0.72
: wet rain | 0.7 wet rain | 0.14
rain | 0.2
dry | rain | 0.3 dry | rain | 0.86




The Chain Rule

= More generally, can always write any joint distribution as
an incremental product of conditional distributions

P(zx1,23,23) = P(x1) P(x2|z1) P(z3|e1, z2)

P(z1,22,...an) = [[ P(zilz1 ... xi1)
i

= Why is this always true?

Bayes’ Rule

= Two ways to factor a joint distribution over two variables:
P(z,y) = P(zly) P(y) = P(y|=) P(x)

= Dividing, we get:
P(ylz)
P(y)

= Why is this at all helpful?
= Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
= Foundation of many systems we’ll see later (e.g. ASR, MT)

P(aly) =

P(2)

= In the running for most important Al equation!

Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:
__ P(Effect|Cause) P(Cause)

P(Cause|Effect)
P(Effect)
= Example:
= mis meningitis, s is stiff neck  p(s|m) = 0.8
_ Example
P(m) = 0.0001 givens
P(s) =0.1
e P 0.8 x 0.0001
P(m]s) = ZEMP(m) _ 08 =0.0008
P(s) 0.1
= Note: posterior probability of meningitis still very small
= Note: you should still get stiff necks checked out! Why? 9

Ghostbusters, Revisited

= Let’s say we have two distributions: .
= Prior distribution over ghost location: P(G) !
= Let's say this is uniform
= Sensor reading model: P(R | G)
= Given: we know what our sensors do

= R = reading color measured at (1,1)
= E.g. P(R =yellow | G=(1,1)) = 0.1

011 0.11 0.11

= We can calculate the posterior
distribution P(G|r) over ghost locations
given a reading using Bayes’ rule:

P(glr) < P(r|g)P(g)

Ghostbusters, Revisited

= P(G): Prior distribution over ghost location
= Sensor reading model: P(R | G)

P(R|0 P(R|1 P(R|2 P(R |3
r -8 r 2 r .05 r 0
o 18 o 5 o 15 o Al
y .02 y 27 y 5 y .3
g 0 g .03 g 3 o] 6

= Bayes' rule: P(g|r) « P(r|g)P(g)

Independence

= Two variables are independent if:
Vz,y : P(z,y) = P(z)P(y)

= This says that their joint distribution factors into a product two
simpler distributions

= Another form:

Va,y : P(zly) = P(z)
= Wewrite: X 1LY

= Independence is a simplifying modeling assumption
= Empirical joint distributions: at best “close” to independent

= What could we assume for {Weather, Traffic, Cavity,
Toothache}? 13




Example: Independence?

P(T)

T P

warm | 0.5
P1 (T, W) cold | 0.5 Pz(T7 W)
T w P T w P
warm [ sun | 0.4 warm [ sun | 0.3
warm | rain | 0.1 warm | rain | 0.2
cold sun | 0.2 cold sun | 0.3
cold rain | 0.3 P(W) cold rain | 0.2

w P

sun | 0.6

rain | 0.4

Example: Independence

= N fair, independent coin flips:

P(X1) P(X2) P(Xp)
H ]os H ]os o H o5
T |os T |05 T |05
- _
~

P(X1,X2,...Xn)

2"

o

Probabilistic Models

= Models describe how (a portion of) the world works

= Models are always simplifications
= May not account for every variable
= May not account for all interactions between variables

= “All models are wrong; but some are useful.”
— George E. P. Box

= What do we do with probabilistic models?

= We (or our agents) need to reason about unknown variables,
given evidence

= Example: explanation (diagnostic reasoning)
= Example: prediction (causal reasoning)
= Example: value of information

Probabilistic Models

= For n variables with domain sizes d, joint distribution
table with dn -1 free parameters [recall probabilities sum to one]

Size of representation if we use the chain rule

Dl N =TT oy )
Pay,w2,...on) = || P(@ije1 ... 2i-1)

2
Concretely, counting the number of free parameters
accounting for that we know probabilities sum to one:

o

-1) + d(0-1) + d2(d-1) + ... + d™ (d-1)
= (dr-1)/(d-1) (d-1)
=dn-1

[why do both representations have the same number of free parameters?] 17

Conditional Independence

= P(Toothache, Cavity, Catch)

= If | have a cavity, the ﬁrobability that the probe catches in it doesn't
depend on whether | have a toothache:
= P(+catch | +toothache, +cavity) = P(+catch | +cavity)

= The same independence holds if | don’t have a cavity:
= P(+catch | +toothache, —cavity) = P(+catch| —cavity)

= Catch is conditionally independent of Toothache given Cavity:
= P(Catch | Toothache, Cavity) = P(Catch | Cavity)

= Equivalent statements:
= P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
= P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
= One can be derived from the other easily
20

Conditional Independence

= Unconditional (absolute) independence very rare (why?)

= Conditional independence is our most basic and robust
form of knowledge about uncertain environments:

P = P(z|2)P
Vas: Pegle) = PEPGI) ) yp
Va,y,z 1 P(z|z,y) = P(z|2)
= What about this domain:

= Traffic
= Umbrella
= Raining
= What about fire, smoke, alarm?

21




